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Abstract

This report introduces split graphs and word-representable graphs, two interesting classes of
graphs with unique properties. Split graphs are easily identifiable by a partition of the graph’s ver-
tices into a clique and and independent set. On the other hand, word-representable graphs are not
as easily identifiable. The report first explores the ideas that led to the modern understanding of
split graphs and word-representable graphs separately. Then, it explores the relationship between
these two classes of graphs and presents the most recent results, including the characterization
of word-representable split graphs in terms of forbidden subgraphs. The theorems presented in
this report contribute to the understanding of the structure of split graphs and word-representable
graphs, but do not entirely characterize the entire class of split graphs.

1 Introduction

The theory of split graphs was originally developed in a conference paper by Foldes and Hammer
[FH77] in 1977. A set of vertices is a clique if all pairs of vertices share an edge, while a set of vertices
is an independent set if no pair of vertices share an edge. A graph G is split if and only if its vertices
can be partitioned into a clique and an independent set [FH85]. An example is shown in Figure 1.
Since then, they have been studied extensively [Cla90, FH77, Gol04a, Gol04b, FH85].

Figure 1: An example split graph. Figure from Wikipedia [Wik23].

A graph G is word-representable if one can form a symbolic word w by assigning symbols to each
vertex v ∈ V , and two symbols u, v alternate in w if and only if the corresponding vertices are adjacent
in G. See the left-hand graph in Figure 5 for an example of a word-representable graph. In general, the
class of word-representable graphs is generalizes many families of graphs. Much research effort has been
put into characterizing exactly which graph families are word-representable and not word-representable
[HKP16, KL15, KP08, KS08].

The theory of split graphs and word-representable graphs are each individually interesting. How-
ever, very little is known about the intersection between split graphs and word-representable graphs.
This report will summarize the known connections between these two objects. Firstly in Section 2, we
will present the properties of split graphs that have found the most use in this theory. These mostly
pertain to the fact that the split graphs can be characterized in terms of forbidden induced subgraphs.
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Then in Section 3, we will formalize the notion of word-representable graphs. Word-representable
graphs have a strong connection to what are called semi-transitive orientations of graphs, but will
not be discussed here. For more information, see the Halldórsson-Kitaev-Pyatkin [HKP16] paper on
semi-transitive orientations. In a recent paper by Kitaev, Long, Ma, and Wu, the authors proved the
following result [KLMW17]:

Theorem 1.1. Let G be a split graph in which vertices in the independent set always have degree at
most 2. Then G is word-representable if and only if G contains certain induced subgraphs.

After the sections on split graphs and word-represent graphs, we will then present the main results
in Section 4. Finally, we will discuss open questions in this topic in Section 5.

2 Split Graphs

Definition 2.1. Formally, a simple graph G is split if its vertices can be partitioned V (G) = C ∪ I
where the vertices C form a clique and the vertices I form an independent set.

The reason for the name “split” graphs is hopefully now clear: the definition states that the vertices
can, in a sense, be split. There are two other ways in which the split graphs can be characterized. A
simple graph G is chordal if for all cycles of length greater than or equal to 4, there is a chord, or an
edge connecting two otherwise non-adjacent vertices of the cycle. If one defines Ḡ = (V,E′) to be the
graph on the same vertices as G = (V,E) with edge e ∈ E′ if and only if e /∈ E. All three are shown
to be equivalent in Theorem 1 of Foldes’ and Hammer’s paper [FH85].

Theorem 2.1. For any graph G, the following three conditions are equivalent:

• Both G and Ḡ are chordal;

• V (G) can be partitioned into a clique C and independent set I;

• G does not contain an induced subgraph isomorphic to 2K2, C4, or C5. See Figure 3.

Figure 2: The edge compliment of the graph in Figure 1. One can verify that both graphs are chordal.

Additionally, the following lemmas on split graphs have found use in many contexts:

Theorem 2.2. A graph G is split if and only if its edge complement Ḡ is split. [Gol04a]

Define α(G) to be the size of the maximum independent set of G. Similarly, define ω(G) to be the
size of the maximum clique of G.

Theorem 2.3. Let G be a split graph with partition V (G) = C ∪ I. Exactly one of the following
conditions hold:

• |I| = α(G) and |C| = ω(G);

• |I| = α(G) and |C| = ω(G)− 1;

• or |I| = α(G)− 1 and |C| = ω(G)
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Figure 3: The graphs 2K2, C4, and C5, respectively.

We now move onto comparability graphs. For any strict partially ordered set with an ordering
operation (S,<), define the corresponding comparability graph to have vertices corresponding to
elements of S, and whose edges are pairs of elements (u, v) if u < v. Then we have the following
theorem characterizing comparability graphs within split graphs:

Theorem 2.4. If G is a split graph, then G is a comparability graph if and only if G contains no
induced subgraph isomorphic to H1, H2, or H3 [FH77]. See Figure 4.

Figure 4: The graphs H1, H2, and H3, respectively.

In the theory of split graphs, many other results utilize this notion of forbidden subgraphs. In this
spirit of this theory, we will see in Section 5 that the main results presented in this report use this
same idea to characterize word-representability in split graphs.

3 Word-Representable Graphs

Now we move onto word-representable graphs.

Definition 3.1. Let w be a word over an alphabet V , and let x and y be two different letters in w.
We say that x and y alternate in w if the deletion of all letter except the copies of x and y results in
a word of type either xyxy... or yxyx... (with either odd or even length).

Example 3.1. Let w1 = xyzyxzx. Then (x, y) do not alternate in w1, but (y, z) and (x, z) both
alternate.

Let w2 = xzyyxz. Then (x, y) are the only alternating letters in w2. Note that if a letter appears
twice, we can force the letter to not alternate with any other letters.

We now introduce word-representable graphs.

Definition 3.2. A graph G = (V,E) is word-representable if there exists a word w over an alphabet
V such that (x, y) alternate in w ⇐⇒ (x, y) ∈ E. In this case, we say w represents G [KP08, HKP16].
Note that w may not uniquely represent G, as shown in Figure 5.

Word-representable graphs are closely related to semi-transitive orientations, a topic which is ex-
plained at depth in [HKP16]. In this paper, the authors managed to prove the following by exploring
word-representability through the lens of semi-transitive orientations of graphs:
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Theorem 3.1. Any 3-colorable graph G is word-representable.

Many graphs, but not all, are word-representable. See Figure 5 for an example. We can also define
a parameter that relates, in some sense, to the difficulty of representing a graph G.

Figure 5: The left-hand graph M is represented by the word wM = 1213423. It is also represented by
the word w′

M = 412134. The right-hand graph N is an example of a minimal non-word-representable
graph. Figure taken from Words and Graphs [KL15].

Definition 3.3. A graph G is called k-word representable if there is some word w representing G
where each letter appears exactly k times in w.

Theorem 3.2. A graph G is word-representable if and only if it is k-word representable for some k.

Proving the backward direction of this theorem is nearly trivial. In the other direction, it is slightly
harder to show, but nonetheless true. See [KP18] for a proof. We now take a detour to show the flavor
of proofs involving word-representability:

Theorem 3.3. The Petersen graph, shown in Figure 6 is not 2-word representable [KP18].

Figure 6: The Petersen graph. Figure taken from [Wen10].

The Petersen graph is frequently used as a small counterexample to statements that might be true
for all graphs. Here is an example of where the Petersen graph fulfills this role it frequently takes on.
We now prove the theorem:

Proof. We will prove this via contradiction. Refer to Figure 6, where we have labeled the vertices with
numbers 1 to 10. The alphabet V will be the the numbers 1 to 10. Assume, for sake of contradiction,
that the Petersen graph is 2-word representable. Then there exists some word w that represents the
Petersen graph. There are a few observations will make use of to make our argument simpler.

Firstly, the Petersen graph is 3-regular, meaning that all vertices have degree 3. Furthermore the
Petersen graph is edge-transitive, meaning that for any edges e1 and e2, there is an automorphism of
the graph mapping e1 to e2.

These two properties allow us to assume, without loss of generality, that the word w starts with
the symbol 1. Furthermore, we can assume that the vertex corresponding to 1 appears on the outer
ring of the graph.
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Now we can now assume that the word has form w = 12561w16w25w32w4, where wi cannot contain
the numbers 1, 2, 5, or 6. This is because we have assumed w is 2-word representable, and each of the
aforementioned symbols already appear exactly twice.

We can also assume that there are exactly 3 symbols between the two copies of the symbol 1 in w.
There are two cases to consider. If y appears once between the two copies of 1, then the other y must
appear after the second copy, and then 1 alternates with y, meaning the corresponding vertex 1 has 4
edges, but we know the Petersen graph is 3-regular. Likewise, if y appears twice between two copies of
1, then again by the 3-regularity of the Petersen graph, we cannot have the vertex y alternating with
a different three symbols than 1 does.

Finally we can present the contradiction. Note that vertex 8 must alternate with 6 but not with
5. Thus, we now know that 8 must appear in both w1 and w2. Similarly, in order to alternate with
2 but not 5, 3 must appear in w3 and w4. However, these two statements together imply that 8833
is a subword in w, meaning 8 and 3 cannot alternate in w. However, 3 and 8 have an edge in the
Petersen graph, so this is a contradiction. Thus we have shown that the Petersen graph cannot be
2-word representable.

It was conjectured in by Kitaev and Pyatkin [KP08] that the Petersen graph is non-word-representable
at all. However, this is not the case. In 2010, Konovalov and Linton showed by computer that there
are two 3-representations for the Petersen graph:

• 138729607493541283076850194562, and

• 134058679027341283506819726495.

Theorem 3.4. The Petersen graph, shown in Figure 6, is word-representable.

Proof. By the given 3-word-representations above and by Theorem 3.2, we have that the Petersen
graph is word-representable.

4 Main Results

The Petersen graph happens to have properties that make it keen for proving results on word-
representability. The most useful of the properties is that the Petersen graph is 3-regular. Split graphs
with maximum clique ω(G) greater than 2 are not k regular for any k, so it seems inappropriate to
use the techniques displayed in the proof of Theorem 3.3.

Fortunately, there is another approach that one can try to characterize the split graphs in terms of
word-representability. Additionally, this approach is much more natural in the context of split graphs.

Theorem 2.1 showed us that the split graphs can be characterized in terms of forbidden subgraphs.
We introduce a theorem on graphs that relates subgraphs and word-representability.

Theorem 4.1. If a graph G contains a non-word-representable graph N as an induced subgraph, then
G is also non-word-representable.

Intuitively, this should make sense. In order to represent such a graph G with a forbidden induced
subgraph H, we would need show that every two vertices sharing an edge in H alternate in some word
w. However, this would clearly produce a word w′ that can represent H by just removing all symbols
in w that don’t refer to vertices in H—forming a contradiction.

At this point, we can state the main results that will be discussed in this report.

Theorem 4.2. Let G be a split graph with maximum clique size ω(G) ≤ 3. Then G is word-
representable.

Proof. Any such G is 3-colorable. Begin by coloring the clique of G with each of the colors. Then color
each vertex of the independent set with a color that it is not adjacent to. Since the maximum clique
size ω(G) is less than or equal to 3, this must be possible. Thus by Theorem 3.1, we are done.
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Figure 7: The graphs T1, T2, and T3. Figures from [KLMW17].

Let the graphs Ti for i = 1, 2, 3 be defined as in Figure 7.
The graphs Aℓ for ℓ ≥ 4 is formed by taking the complete graph Kℓ−1 and adding a vertex i′ to

form a triangle between vertices i and i+ 1 mod ℓ− 1. Then add a vertex ℓ that is adjacent to each
of the vertices 1, 2, · · · , ℓ− 1. See Figure 8 for examples.

Figure 8: The graphs A4 and A5 on the left-hand and right-hand sides, respectively. The graphs Al

are explained in Section 4.

The following results by Kitaev, Long, Ma, and Wu characterize in terms of forbidden subgraphs
certain word-representable split graphs [KLMW17]:

Theorem 4.3. Let G be a split graph in which vertices in the independent set always have degree at
most 2. Then G is word-representable if and only if G does not contain both T2 and Al as induced
subgraphs.

Theorem 4.4. Let G be a split graph in which vertices in the independent set always have degree at
most 2, and the size of the maximum clique ω(G) is exactly 4. Then G is word-representable if and
only if G does not contain the graphs T1, T2, and T3 as induced subgraphs.

These two results are not easy to prove. The authors of the aforementioned paper manage to
prove the first theorem by relying on properties of the graph Al. This graph is minimally non-word-
representable, meaning that every induced subgraph of Al is word-representable, except for the trivial
subgraph Al. The following theorem is proved though intense casework involving several considera-
tions over the possibilities of the graph, up to isomorphism. This proof also relies on demonstrating
that several graphs emit semi-transitive orientations, a topic that is very closely related to word-
representability.
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5 Discussion

The theorems mentioned in this report (Theorem 4.3 and Theorem 4.4) are the most recent published
results related to this topic. Unfortunately, this means that there are no known categorical results
for arbitrary split graphs. The results shown here apply under very specific circumstances: when the
maximum degree of the independent set is limited, when the size of the maximum clique of limited, or
both.

One can consider the natural extensions of Theorem 4.3 and Theorem 4.4:

Open Question 5.1. Let G be a split split in which vertices in the independent set always have degree
at most d. When is G word-representable?

It is unknown whether the original classification presented in Theorem 4.3 still holds for values of d
greater than 2. Since this must be checked for split graphs of arbitrary size, verification via computer
is not an option. However, it would certainly be a remarkable result if the original characterization of
forbidden subgraphs holds for all k ≥ 2.

Alternatively, we can consider extending the result of Theorem 4.4:

Open Question 5.2. Let G be a split graph in which vertices in the independent set always have
degree at most d, and the size of the maximum clique ω(G) is exactly k. Which subgraphs characterize
when G is word-representable?

This direction unfortunately seems much harder to extend than the former due to the fact that
there are now two parameters to consider.

It is hard to imagine either of these questions being resolved anytime soon. It seems much more
likely that results related to semi-transitive orientations may lead to success, perhaps due to their alge-
braic nature. For the key results relating word-representable graphs and semi-transitive orientations,
see [HKP16].
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