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1 Introduction

Randomness is ubiquitous in computer science. It enables many applications, such as random number
generation (RNG), simulations, cryptography, and randomized algorithms. In fields like machine
learning/artificial intelligence, randomness enhances exploration in search algorithms and improves
model training. Randomness also plays a significant role in ensuring the security of systems, as
cryptographic keys and secure communication rely on unpredictable random values. In the study of
algorithms, randomized forms of algorithms still provide much better guarantees on runtime than their
deterministic counter-parts [Gas14].

Despite the numerous incredible ways that randomness has found usefulness in computer science,
finding true sources of random bits is nearly impossible. In most cases, sources of randomness provided
to computers are called weak random sources, containing biased or correlated bits. Randomness
extractors were originally motivated by the need for generating nearly uniformly random bits from
weak random sources. Creating nearly uniformly random bits from sources that are not very random
seems like an impossible task, but in fact it is possible and has great theoretical implications.

Randomness extractors, or just extractors, are the name for the broad family of ideas on how to take
a weakly random source and turn it into one that is nearly uniform distribution on m bits. Informally,
extractors are deterministic functions that little bit of randomness into something very random. Note
that this seems very similar to the definition of pseudorandom number generators (PRNGs), but they
are not the same. Whereas the definition of extractors gives requires the output to be ϵ-close to
uniform, the definition of PRNGs only requires outputs to be computationally indistinguishable from
the uniform distribution, a significantly weaker notion. Secondly, extractors specify that a weakly
random source should be used, but the same is not true for PRNGs [AB09].

The paper begins by defining crucial terms like entropy, min-entropy, and statistical distance, es-
tablishing a solid foundation in Section 2. It then delves into the different types of extractors: seedless,
seeded, and strongly seeded, outlining their functionalities and properties in Section 3. Building on
this framework, the Section 4 delves into the theoretical aspects, proving the existence of effective
seeded extractors and offering an explicit construction utilizing 2-independent hash functions. Finally,
we discuss further areas of exploration: connecting the world of extractors with error-correcting codes
and introducing the concept of non-malleable extractors.

2 Definitions

Along with Shannon entropy, there are two other relevant measures of the amount of “randomness”
or “surprise” in a random variable that are relevant to the discussion at hand. We define them below.

Definition 1. (Entropy) Let X be a random variable and supp(X) be the support of a random variable.
That is, the set of values of X that occur with non-zero probability. Then

• the Shannon entropy of X is

H(X) =
∑

x∈supp(X)

p(x) log 1/p(x) = E[− log p(X)]. (1)
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• the min-entropy of X is
H∞(X) = min

x∈supp(X)
log 1/p(x). (2)

• the Rényi entropy of X (of order α) is

Hα(X) =
1

1− α
log(

∑
x∈supp(X)

p(x)α). (3)

The Rényi entropy is a generalization of both the Shannon entropy and min-entropy. The limiting
value of Hα as α −→ 1 is the Shannon entropy and the limiting value of Hα as α −→ ∞ is the min-entropy
[EEB+04]. We take particular interest in α = 2, which is also sometimes just referred to as the Rényi
entropy or the collision entropy in other literature. We notate the collision entropy as H2.

For each of the entropies H = {H,H∞, H2}, the following properties are satisfied.

Lemma 1. For each of H ∈ H and random variables X and Y , the following properties are true
[Vad12]:

• H(X) ≥ 0 with equality if and only if X is supported by a single element.

• H(X) ≤ log(| supp(X)|) with equality if and only if X is uniform on supp(X).

• If X,Y are independent, then H((X,Y )) = H(X) +H(Y ).

• For all deterministic functions f , H(X) ≥ H(f(X)).

• For every X, H∞(X) ≤ H2(X) ≤ H(X).

These properties of entropy are somewhat expected and very natural. It is also not hard to see
that we can think of the min-entropy as the largest non-negative real number k ∈ R≥0 such that
P [X = x] ≤ 2−k for every x in the support of X.

We also need to formalize the meaning of ”close to the uniform distribution” in order to properly
describe extractors. We use this by using a metric on on random variables.

Definition 2. (Variation Distance) For random variables X,Y taking values in U = supp(X)
⋃

supp(Y ),
the variation distance is ∆(X,Y ) = maxE⊂U |PX [E] − PY [E]|. We say X and Y are ϵ-close if
∆(X,Y ) ≤ ϵ.

Informally, this is just the maximum difference in probabilities between the two distributions given
that the same event happens. Similarly, there are certain properties that we expect from a good
measure of variation distance between random variables.

Lemma 2. For random variables X,Y, Z,

• ∆(X,Y ) ≥ 0 with equality if and only if X = Y .

• ∆(X,Y ) ≤ 1 with equality if and only if supp(X) and supp(Y ) are disjoint.

• ∆(X,Y ) = ∆(Y,X).

• ∆(X,Z) ≤ ∆(X,Y ) + ∆(Y,Z), showing that ∆ indeed is a metric on random variables.

• ∆(X,Y ) = 1/2
∑

a∈U |PX(a)− PY (a)|

In the literature, it is common to define the statistical variation as 1/2
∑

a∈U |PX(a) − PY (a)|.
However, the last property of Lemma 2 shows that these are indeed equivalent.

Now we introduce random variables using the terminology used in the study of randomness extrac-
tors.

Definition 3. If X is a distribution over {0, 1}n, with min-entropy H∞(X) ≥ k, then it is called a
(n,k)-source.
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Example 1. Consider a series of coin tosses with a biased coin. Let X be the series of n independent
coin tosses, where each flip results in a 1 with probability δ < 1/2 and results in a 0 with probability
1 − δ. The min-entropy H∞(X) can be shown to be n log 1

1−δ Therefore, X is a (n, n log 1
1−δ ) source

[AB09].

Example 2. We can also consider Santha-Vazirani sources [SV84]. Let X be a series of n bits and
δ < 1/2. X also has the property that for all i ∈ [n]:

δ ≤ P [Xi = 1|X1 = x1, ..., Xi−1 = xi−1] ≤ 1− δ. (4)

In other words, the probability the i-th bit of X being 1 even when given the knowledge of all previous
bits is bounded between δ and 1−δ. Then the min-entropy H∞(X) ≥ H(δ)n. X is also an (n, nH(δ))-
source.

3 Seedless and Seeded Extractors

We now introduce the weakest class of extractors.

Definition 4. Let X be a family of sources with supp(X) = {0, 1}n for X ∈ X . We say a function
Ext : {0, 1}n −→ {0, 1}m is a seedless extractor for X with error ϵ if for all X ∈ X ,

∆(Ext(X), Um) ≤ ϵ, (5)

where Um is the uniform distribution on m bits.

Example 3. In Example 1, how could one possibly transform this biased (n, nH(δ))-source into a
source of uniformly random bits? Von Neumann proposed a solution which is widely known to be one
of the first and simplest (seedless) explicit extractors. The idea is to pair the results of consecutive
coin flips. Then for each pair, output 0 if the outcome was 01, 1 if the outcome was 10, and skip the
pair otherwise. This can be shown to produce a uniformly random distribution of bits, thus being a
seedless extractor [VN63].

Unfortunately, seedless extractors are quite limited in power. In response to this limitation, Nisan
and Zuckerman introduced the notion of extractors with seeds.

Definition 5. We say a function Ext : {0, 1}n × {0, 1}t −→ {0, 1}m is a seeded (k, ϵ) extractor for
any (n, k)-source X if:

∆(Ext(X,Ut), Um) ≤ ϵ, (6)

We call the second part of the input the seed of the extractor [NZ96]. We call a seeded (k, ϵ) extractor
a strongly seeded (k, ϵ) extractor if for any (n, k)-source X:

∆((Ut, Ext(X,Ut)), (Ut, Um)) ≤ ϵ. (7)

Intuitively, strongly seeded extractors need to extract randomness independently of the seed.

A good point is that it seems like extractors are pointless if we require access to a truly random
t bits in the first place. Indeed, in the case where t ≥ m, trivial extractors exist–they just take its
output from the uniformly random seed. However, we are interested in the case where t << m. Besides
the original motivation of searching for ways to sufficiently randomize biased sources of randomness,
extractors are also of practical interest to simulate what’s known as the bounded-error probabilistic
polynomial time (BPP) complexity class. This is a class of problems which can be solved efficiently
with randomized algorithms with a probability of correctness of at least 1/2 + c for some c > 0. For
the purposes of simulating algorithms for problems in BPP, we would like to be able to generate m
uniformly random bits for use in the algorithm using a weakly random source X. Suppose there exists
an such a seeded extractor with seed size t = O(log n). Then we could just efficiently simulate the
algorithm by enumerating over the extractor with all 2t = O(n) possible inputs for the seed.

We will now prove the existence of good seeded extractors. By “good”, we mean that the seed size
is small (t << m). However, to do this, we use a similar theorem that states the existence of seedless
extractors a certain class of special sources.
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Definition 6. We say X is a flat (n, k)-source if for any x ∈ {0, 1}n, P [X = x] = 0 or P [X = x] =
2−k.

The notion of a source is very broad and in general can be hard to use in proofs. Fortunately, flat
sources are the saving grace! These sources correspond exactly to a uniform distribution on a subset
S ⊆ {0, 1}n with |S| = 2k. Furthermore, they are very powerful by the following lemma.

Lemma 3. For any source X, X is an (n, k)-source if and only if it is a distribution D on flat (n, k)-
sources X1, X2, .... Plainly, a sample of X corresponds to picking one of the Xi according to D and
then drawing a sample from Xi [Vad12].

This enables us to show the existence of seedless extractors for the class of flat sources of min-
entropy H∞ ≥ k.

Theorem 1. For every flat (n, k)-source X and m ≤ n, there exists a seedless extractor Ext :
{0, 1}n −→ {0, 1}m with

• ∆(Ext(X), Um) ≤ ϵ and

• m = k − 2 log 1/ϵ−O(1).

This extractor can be chosen randomly. In this case, the probability that extractor is ϵ-close to Um is

1− 2−Ω(2kϵ2) [Sha11, Vad12].

The proof of this theorem can be shown probabilistically using Lemma 3 and the Chernoff bounds.
Perhaps more interestingly is that Theorem 1 almost directly implies the existence of good seeded
extractors.

Theorem 2. For every (n, k)-source X and ϵ > 0, there exists a seeded (k, ϵ) extractor Ext : {0, 1}n×
{0, 1}t −→ {0, 1}m with

• ∆(Ext(X), Um) ≤ ϵ,

• m = k + t− 2 log(1/ϵ)−O(1), and

• t = log(n− k) + 2 log(1/ϵ) +O(1).

This theorem is known to be optimal in respect to the relationship between error probability ϵ,
output length m, and seed length t. The idea of the proof is to first apply Lemma 3 to simplify the
analysis. Then, consider a new source X ′ = (X,Ut) with min-entropy k + t. By applying Theorem 1,
we know the probability of this (partially) randomly constructed extractor failing. All that is left to
show is that the probability of this extractor failing for all distribution of flat sources is less than 1.

Proof. We choose an candidate extractor function at random with m = k + t− 2 log(1/ϵ)−O(1). By
Lemma 3, we only need to show that this candidate extractor function works for all flat (n, k)-sources.
Using this lemma, decomposing an arbitrary (n, k)-source into multiple flat (n, k)-sources means the
probability of the random extractor failing is at most the probability of random extractor failing for a
fixed flat (n, k)-source times the number of flat (n, k)-sources.

Next, we note that if X is a (n, k)-source, then (X,Ut) is a flat (n+ t, k + t)-source. By Theorem
1, the probability of such a randomly constructed extractor failing on a fixed flat (n, k)-source is at

most 2−Ω(2k+tϵ2) = 2−Ω(2k2tϵ2). Thus, the probability of failing in general is just(
2n

2k

)
2−Ω(2k2tϵ2) ≤

(
2ne

2k

)2k

2−Ω(2k2tϵ2) < 1 (8)

where the first inequality follows from a common bound on the binomial coefficients, and the second
inequality is true when 2tϵ2 ≥ O(log 2n−ke). Rearranging this equation shows the necessary bound on
t. Note that this proof can also be extended to work for strongly seeded extractors.

This probabilistic argument shows the existence of good extractors, but does not explicitly show
how to construct such an extractor.
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4 Explicit Extractors

Since the introduction of extractors in [NZ96], explicit constructors of extractors whose bounds match
those given in Theorem 2 have been hard to find. Fortunately, now there are explicit constructions of
seeded extractors that asymptotically match the probabilistic construction of Theorem 2, the first of
which was given by Lu, Reingold, Vadhan, and Wigderson [LRVW03].

These extractors are known to be nearly optimal–the only problem being that the error ϵ needs
to be fairly large. The work of Guruswami, Umans, and Vadhan improves upon this construction in
[GUV07] by giving a new, simpler construction based on the theory expander graphs. Furthermore,
this work achieves a better error parameter ϵ.

However, the construction is still far too complicated to fit in this paper comfortably. As a result,
we introduce a less-than-optimal construction employing 2-independent hash functions to enhance
comprehension.

Definition 7. A collection H of functions h : {0, 1}n −→ {0, 1}m (H ∈ H) is 2-independent, or
pairwise independent, if for every x ̸= x′ ∈ {0, 1}n and y, y′ ∈ {0, 1}m,

Ph∈H[h(x) = y ∧ h(x′) = y′] =
1

22m
.

That is to say, if we can uniformly at random select a hash function h ∈ H, then the random
variables h(x) and h(y) are uniformly distributed and pairwise independent. There are known con-
structions of collections H which have this property. The Carter and Wegman construction in [CW79]
is popular, since we are able to completely specify a hash function h ∈ H with a string of length n+m.
We will use this idea to form extractors.

Definition 8. Suppose we have an (n, k)-source X and we draw from this source twice to get two length
n binary strings x, y. The collision probability of X is P [x = y] =

∑
x,y p(x, y) =

∑
x∈supp(X) p

2
x.

Now, we state a lemma upper bounding the collision probability for (n, k)-sources, based on the
interpretation of min-entropy H∞ that each draw from X should produce at least k bits of randomness.

Lemma 4. If X is an (n, k)-source, then the collision probability is at most 2k.

Proof. Left as an exercise for the reader. Hint: apply Definition 1 and Lemma 1.

Using this lemma, we can prove a very important lemma in cryptography first stated by Russell
Impagliazzo, Leonid Levin, and Michael Luby in [ILL89] that tells us something about how many
uniformly random bits we can extract from a source X.

Lemma 5. (Leftover Hash Lemma) Let m = k − 2 log(1/ϵ). For every (n, k)-source X:

∆((H(X), H), (Un, H)) ≤ ϵ (9)

where H is a hash function selected uniformly at random from a pairwise independent collection H of
hash functions h : {0, 1}n −→ {0, 1}m.

Proof. Conceptually, the proof can be broken into three parts. The first part is a direct application
of Lemma 4. The second part is to show that this implies that the output of the extractor is close to
uniform under the L2 norm. The variation distance as defined above uses the L1 norm, so the last part
is to show that the output of the extractor is also closed to uniform under the L1 norm by a general
inequality relating the two. We refer the reader to [Vad12] for a full proof.

For explicitness, the extractor Ext : {0, 1}n × {0, 1}n+m −→ {0, 1}m is the function which takes in
as input n bits from a source X and a truly random hash function h described by a string of length
n+m, and outputs m bits close to uniformly random, or Ext(x, h) = h(x).

This extractor is not practical–the seed length is longer than the output length! However, it
serves as a good starting point for building good extractors. Namely, the output length matches the
theoretical bound in Theorem 2.

5



5 Discussion

Extractors, with their inherent theoretical appeal, have sparked a vibrant and diverse research land-
scape, with each direction yielding promising results. This section explores some of these promising di-
rections. Firstly, extractors demonstrate a strong connection with other fields, such as error-correcting
codes. We start by introducing a generalization of decodable codes.

Definition 9. For x, y ∈ {0, 1}n, let d(x, y) be Hamming distance between x and y. A function

C : {0, 1}n −→ {0, 1}2t is (l, ϵ)-list decodable if for every z ∈ {0, 1}2t

|{x : d(C(x), z) ≤ (1/2− ϵ)2d}| ≤ l. (10)

In other words, C represents a particular code for the strings in {0, 1}n. Then, if some noisy channel
were to flip 1/2− ϵ of the indices of C(x) −→ z, the receiver would still be able to figure out a list of at
most l messages such that one of them is the original x. As disparate as it may seem, list decodable
codes are exactly equivalent to strongly seeded extractors.

Theorem 3. List decodable codes and strongly seeded extractors are equivalent [Tre01].

• If Ext : {0, 1}n × {0, 1}t −→ {0, 1} is a strongly seeded (k, ϵ) extractor then C(x)y = Ext(x, y) is
a (2k − 1, 2ϵ)-list decodable code.

• If C : {0, 1}n −→ {0, 1}2t is a (l, ϵ)-list decodable code, then Ext(x, y) = C(x)y is a strongly seeded
(k, 2ϵ)-extractor for k = log l + log(1/ϵ) + 1.

Thanks to the original breakthrough presented in [Tre01], an entire unified theory of extractors
and error-correcting codes exist.

Another exciting direction of seeded extractors occurs due to their usefulness in cryptographically
secure settings. Consider the following scenario: we would like to communicate with a friend by using
some shared randomly generated key. A natural protocol for this might be to use a weak source X,
and a random seed y, then apply an extractor to produce a random key. Assuming both parties have
access to the same weak source X, we might practically do this by sending our friend the seed y. After
we apply an extractor, we both have access to the same random key R. However, this is obviously not
secure–an adversary could intercept the message of the seed y, transform it to some other seed f(y),
and then send that to our friend.

Without delving much more into the cryptography of it, one could ask for a new type of extractor
to somewhat combat this issue. Consider an extractor which takes a weak source X and a seed y and
extracts some random bits R. However, even when an adversary gains the seed y and tampers with it
to produce f(y), the two values produced using each seed y and f(y) results in two different values R
and R′ which are completely unrelated. Formally:

Definition 10. A function nmExt : {0, 1}n×{0, 1}t −→ {0, 1}m is a non-malleable extractor if for
any (n, k) source X and tampering function f : {0, 1}t −→ {0, 1}t with no fixed-points:

∆((nmExt(X,Ut), nmExt(X, f(Ut)), Ut), (Um, nmExt(X, f(Ut)), Ut)) ≤ ϵ

This idea was only introduced fairly recently and were originally probabilistically shown to exist in
[DW09], but already have already been proven to exist in [Li16, CL16, Li20]. This particular line of
study of randomness extractors has been hugely successful, resulting in many other breakthroughs in
cryptography.

There are many other forms of extractors only introduced in the past ten years that have already
found much theoretical interest and practical interest that haven’t been covered here. To list a few:
multi-source extractors, seedless extractors, formulations of extractors as graph theoretic objects, and
quantum-classical extractors. The reader is encouraged to continue reading on extractors, perhaps
starting with this recent journal paper [Cha22].
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